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What are FPGAs and why are they useful?

CPU/GPU Architecture
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https://www.rapidwright.io/docs/FPGA_Architecture.html

FPGA Architecture
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https://allaboutfpga.com/fpga-architecture/
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Core idea of FPGA acceleration is Single instruction,
multiple data (similar to GPUs)

Key difference is no instruction set so no time/energy wasted
on fetch/decode/execute cycles

GPUs offer massive parallelism through many cores (e.g. many
factories)

FPGAs offer parallelism through pipelining (e.g. single
production line)
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FPGA development cycle

= Most performant/difficult is direct circuit design (e.g. Verilog)

= Alternative is high level synthesis (HLS)

= Describe the algorithm then let tools design the circuit

= This is slow

= Fast development requires hardware simulation or CPU
portable code

= FPGA optimisation can be unintuitive; requires good

optimisation tools



Current state of developer tools

Tool Vendor Support Ease of use

Vitis HLS Xilinx low-level; includes
libraries; good but
tricky tools

OpenCL Xilinx/Intel low-level; potentially
portable to
CPU/GPU

SYCL Intel better syntax; likely
future direction for
Intel

DaCe Python Xilinx/Intel Higher level,
portable; immature;
harder to debug +
optimise
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H&ES Project

Monte-Carlo Markov Chain application

= lterative solver library

= Development of training materials & tutorials
= Potential collaboration with SysGenX
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Monte-Carlo Markov Chain (MCMC) generation

= Used to infer likely parameters + detailed error estimates from
real /simulated data
= Calculates an MCMC using Metropolis-Hastings algorithm
= Computationally heavy parts are. ..
= Covariance matrix generation
= Cholesky decompositions
= Current CPU codes limited to O(100) samples
= Used development to better understand Vitis HLS tooling
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Iterative Solvers library

= Identified as missing niche in FPGA space
= Planis to. ..
= Extend and benchmark existing solvers
= Adapt solvers for Intel FPGAs
= Implement vendor-agnostic front-end
= Focus on usability
= Integrate with existing codes/projects (WP4 of SysGenX?)
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