The ExCALIBUR Hardware and Enabling Software (H&ES)

Programme

Pl: Adrian Jackson (EPCC)

Co-I: Nick Brown (EPCC), Serge Guillas (UCL), Jonathan Cooper
(UCL), Suhaib Fahmy (Warwick)

What are FPGAs and why are they useful?

CPU/GPU Architecture

s)
CPU
»| Control [
= Unit __ Instructions
s ™
Processor

Registers
] Y

Combinational
Logic

Y

—»{ Input Output —»-

YVvy ; Y

Main -
Memory 5

https://www.rapidwright.io/docs/FPGA_Architecture.html

FPGA Architecture

Interconnect

’Configurable
" Logic Block

(CLB)

Switch
-t Matrix

.1/0Bank

IO

https://allaboutfpga.com/fpga-architecture/

= Core idea of FPGA acceleration is Single instruction,
multiple data (similar to GPUs)

= Core idea of FPGA acceleration is Single instruction,
multiple data (similar to GPUs)

= Key difference is no instruction set so no time/energy wasted
on fetch/decode/execute cycles

= Core idea of FPGA acceleration is Single instruction,
multiple data (similar to GPUs)

= Key difference is no instruction set so no time/energy wasted
on fetch/decode/execute cycles

= GPUs offer massive parallelism through many cores (e.g. many

factories)

Core idea of FPGA acceleration is Single instruction,
multiple data (similar to GPUs)

Key difference is no instruction set so no time/energy wasted
on fetch/decode/execute cycles

GPUs offer massive parallelism through many cores (e.g. many
factories)

FPGAs offer parallelism through pipelining (e.g. single
production line)

©BERTENDSPSL

2.
1 I I
ull T

FPGA FPGA FPGA

v N @ W

w s

Nvidia GeForce PowerColor Sapphire Radeon Artix-7 200T Kintex-7480T Virtex-7 690T
GT 73064-bit ~ Radeon R9 390X RO Fury X

M Processing Power - Single, TFLOPS M Price, €/GFLOPS M Power Efficiency, GFLPOS/W/10

'GPU vs FPGA Performance Comparison - BERTEN. (2020, December 06).
Retrieved from
https://www.bertendsp.com /gpu-vs-fpga-performance-comparison

FPGA development cycle

= Most performant/difficult is direct circuit design (e.g. Verilog)

FPGA development cycle

= Most performant/difficult is direct circuit design (e.g. Verilog)
= Alternative is high level synthesis (HLS)

FPGA development cycle

= Most performant/difficult is direct circuit design (e.g. Verilog)
= Alternative is high level synthesis (HLS)
= Describe the algorithm then let tools design the circuit

FPGA development cycle

= Most performant/difficult is direct circuit design (e.g. Verilog)
Alternative is high level synthesis (HLS)
Describe the algorithm then let tools design the circuit

= This is slow

FPGA development cycle

= Most performant/difficult is direct circuit design (e.g. Verilog)
= Alternative is high level synthesis (HLS)

= Describe the algorithm then let tools design the circuit

= This is slow

= Fast development requires hardware simulation or CPU

portable code

FPGA development cycle

= Most performant/difficult is direct circuit design (e.g. Verilog)

= Alternative is high level synthesis (HLS)

= Describe the algorithm then let tools design the circuit

= This is slow

= Fast development requires hardware simulation or CPU
portable code

= FPGA optimisation can be unintuitive; requires good

optimisation tools

Current state of developer tools

Tool Vendor Support Ease of use

Vitis HLS Xilinx low-level; includes
libraries; good but
tricky tools

OpenCL Xilinx/Intel low-level; potentially
portable to
CPU/GPU

SYCL Intel better syntax; likely
future direction for
Intel

DaCe Python Xilinx/Intel Higher level,
portable; immature;
harder to debug +
optimise

H&ES Project

= Monte-Carlo Markov Chain application

H&ES Project

= Monte-Carlo Markov Chain application
= lterative solver library

H&ES Project

= Monte-Carlo Markov Chain application
= lterative solver library
= Development of training materials & tutorials

H&ES Project

Monte-Carlo Markov Chain application

= lterative solver library

= Development of training materials & tutorials
= Potential collaboration with SysGenX

Monte-Carlo Markov Chain (MCMC) generation

= Used to infer likely parameters + detailed error estimates from
real /simulated data

Monte-Carlo Markov Chain (MCMC) generation

= Used to infer likely parameters + detailed error estimates from
real /simulated data
= Calculates an MCMC using Metropolis-Hastings algorithm

Monte-Carlo Markov Chain (MCMC) generation

= Used to infer likely parameters + detailed error estimates from
real /simulated data
= Calculates an MCMC using Metropolis-Hastings algorithm

= Computationally heavy parts are. ..

Monte-Carlo Markov Chain (MCMC) generation

= Used to infer likely parameters + detailed error estimates from
real /simulated data
= Calculates an MCMC using Metropolis-Hastings algorithm

= Computationally heavy parts are. ..
= Covariance matrix generation

Monte-Carlo Markov Chain (MCMC) generation

= Used to infer likely parameters + detailed error estimates from
real /simulated data
= Calculates an MCMC using Metropolis-Hastings algorithm

= Computationally heavy parts are. ..
= Covariance matrix generation
= Cholesky decompositions

Monte-Carlo Markov Chain (MCMC) generation

= Used to infer likely parameters + detailed error estimates from
real /simulated data
= Calculates an MCMC using Metropolis-Hastings algorithm

= Computationally heavy parts are. ..
= Covariance matrix generation
= Cholesky decompositions

= Current CPU codes limited to O(100) samples

Monte-Carlo Markov Chain (MCMC) generation

= Used to infer likely parameters + detailed error estimates from
real /simulated data
= Calculates an MCMC using Metropolis-Hastings algorithm
= Computationally heavy parts are. ..
= Covariance matrix generation
= Cholesky decompositions
= Current CPU codes limited to O(100) samples
= Used development to better understand Vitis HLS tooling

Iterative Solvers library

= Identified as missing niche in FPGA space

10

Iterative Solvers library

= Identified as missing niche in FPGA space
= Planis to. ..

10

Iterative Solvers library

= Identified as missing niche in FPGA space
= Planis to. ..
= Extend and benchmark existing solvers

10

Iterative Solvers library

= Identified as missing niche in FPGA space
= Planis to. ..
= Extend and benchmark existing solvers
= Adapt solvers for Intel FPGAs

10

Iterative Solvers library

= Identified as missing niche in FPGA space
= Planis to. ..
= Extend and benchmark existing solvers
= Adapt solvers for Intel FPGAs
= Implement vendor-agnostic front-end

10

Iterative Solvers library

= Identified as missing niche in FPGA space
= Planis to. ..
= Extend and benchmark existing solvers
= Adapt solvers for Intel FPGAs
= Implement vendor-agnostic front-end
= Focus on usability

10

Iterative Solvers library

= Identified as missing niche in FPGA space
= Planis to. ..
= Extend and benchmark existing solvers
= Adapt solvers for Intel FPGAs
= Implement vendor-agnostic front-end
= Focus on usability
= Integrate with existing codes/projects (WP4 of SysGenX?)

10

