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What are FPGAs and why are they useful?

CPU/GPU Architecture

Source: https://www.rapidwright.io/docs/FPGA_Architecture.html
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FPGA Architecture

Source: https://allaboutfpga.com/fpga-architecture/
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• Core idea of FPGA acceleration is Single instruction,
multiple data (similar to GPUs)

• Key difference is no instruction set so no time/energy wasted
on fetch/decode/execute cycles

• GPUs offer massive parallelism through many cores (e.g. many
factories)

• FPGAs offer parallelism through pipelining (e.g. single
production line)
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1GPU vs FPGA Performance Comparison - BERTEN. (2020, December 06).
Retrieved from
https://www.bertendsp.com/gpu-vs-fpga-performance-comparison
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FPGA development cycle

• Most performant/difficult is direct circuit design (e.g. Verilog)

• Alternative is high level synthesis (HLS)
• Describe the algorithm then let tools design the circuit
• This is slow
• Fast development requires hardware simulation or CPU

portable code
• FPGA optimisation can be unintuitive; requires good

optimisation tools
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Current state of developer tools

Tool Vendor Support Ease of use

Vitis HLS Xilinx low-level; includes
libraries; good but
tricky tools

OpenCL Xilinx/Intel low-level; potentially
portable to
CPU/GPU

SYCL Intel better syntax; likely
future direction for
Intel

DaCe Python Xilinx/Intel Higher level;
portable; immature;
harder to debug +
optimise 7



H&ES Project

• Monte-Carlo Markov Chain application

• Iterative solver library
• Development of training materials & tutorials
• Potential collaboration with SysGenX
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Monte-Carlo Markov Chain (MCMC) generation

• Used to infer likely parameters + detailed error estimates from
real/simulated data

• Calculates an MCMC using Metropolis-Hastings algorithm
• Computationally heavy parts are. . .

• Covariance matrix generation
• Cholesky decompositions

• Current CPU codes limited to O(100) samples
• Used development to better understand Vitis HLS tooling
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Iterative Solvers library

• Identified as missing niche in FPGA space

• Plan is to. . .

• Extend and benchmark existing solvers
• Adapt solvers for Intel FPGAs
• Implement vendor-agnostic front-end
• Focus on usability
• Integrate with existing codes/projects (WP4 of SysGenX?)
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